viernes, 25 de marzo de 2016

FACTORIZACION



Factorizar una expresión algebraica es hallar dos o más factores cuyo producto es igual a la expresión propuesta.
La factorización puede considerarse como la operación inversa a la multiplicación, pues el propósito de ésta última es hallar el producto de dos o más factores; mientras que en la factorización, se buscan los factores de un producto dado.
Se llaman factores o divisores de una expresión algebraica, a los términos que multiplicados entre sí dan como producto la primera expresión.

Factorización
Multiplicación

Al factorizar una expresión, escribimos la expresión como un producto de sus factores. Supongamos que tenemos dos números 3 y 5 y se pide que los multipliquemos, escribiremos . En el proceso inverso, tenemos el producto 15 y se nos pide que lo factoricemos; entonces tendremos

Al factorizar el número 20, tendremos  o .

Advierte que  y  no están factorizados por completo. Contienen factores que no son números primos. Los primeros números primos son 2, 3, 5, 7, 11, etc. Puesto que ninguna de esas factorizaciones está completa, notamos que en la primera factorización , de modo que  mientras que la segunda factorización , de modo que , en cualquier caso la factorización completa para 20 es .

De ahora en adelante cuando digamos factorizar un número, queremos decir factorizarlo por completo. Además se supone que los factores numéricos son números primos. De esta manera no factorizamos 20 como .
Con estos preliminares fuera del camino, ahora podemos factorizar algunas expresiones algebraicas.

a) Factorización por factor común

b) Factor común por agrupación de términos


c) Diferencia de cuadrados

d) Trinomio cuadrado perfecto

e) Trinomios de la forma x²+bx+c


f) Trinomios de la forma ax²+bx+c

g) Suma de Cubos Perfectos

h) Diferencia de Cubos Perfectos


Realiza los siguientes casos de factorización del ejercicio 106 (Miscelanea)







No hay comentarios.:

Publicar un comentario